24 research outputs found

    Speech enhancement using deep dilated CNN

    Get PDF
    In recent years, deep learning has achieved great success in speech enhancement. However, there are two major limitations regarding existing works. First, the Bayesian framework is not adopted in many such deep-learning-based algorithms. In particular, the prior distribution for speech in the Bayesian framework has been shown useful by regularizing the output to be in the speech space, and thus improving the performance. Second, the majority of the existing methods operate on the frequency domain of the noisy speech, such as spectrogram and its variations. We propose a Bayesian speech enhancement framework, called BaWN (Bayesian WaveNet), which directly operates on raw audio samples. It adopts the recently announced WaveNet, which is shown to be effective in modeling conditional distributions of speech samples while generating natural speech. Experiments show that BaWN is able to recover clean and natural speech. Multi-channel speech enhancement with ad-hoc sensors has been a challenging task. Speech model guided beamforming algorithms are able to recover natural sounding speech, but the speech models tend to be oversimplified to prevent the inference from becoming too complicated. On the other hand, deep learning based enhancement approaches are able to learn complicated speech distributions and perform efficient inference, but they are unable to deal with variable number of input channels. Also, deep learning approaches introduce a lot of errors, particularly in the presence of unseen noise types and settings. We have therefore proposed an enhancement framework called DeepBeam, which combines the two complementary classes of algorithms. DeepBeam introduces a beamforming filter to produce natural sounding speech, but the filter coefficients are determined with the help of a monaural speech enhancement neural network. Experiments on synthetic and real-world data show that DeepBeam is able to produce clean, dry and natural sounding speech, and is robust against unseen noise

    F0-consistent many-to-many non-parallel voice conversion via conditional autoencoder

    Full text link
    Non-parallel many-to-many voice conversion remains an interesting but challenging speech processing task. Many style-transfer-inspired methods such as generative adversarial networks (GANs) and variational autoencoders (VAEs) have been proposed. Recently, AutoVC, a conditional autoencoders (CAEs) based method achieved state-of-the-art results by disentangling the speaker identity and speech content using information-constraining bottlenecks, and it achieves zero-shot conversion by swapping in a different speaker's identity embedding to synthesize a new voice. However, we found that while speaker identity is disentangled from speech content, a significant amount of prosodic information, such as source F0, leaks through the bottleneck, causing target F0 to fluctuate unnaturally. Furthermore, AutoVC has no control of the converted F0 and thus unsuitable for many applications. In the paper, we modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time. Therefore, we can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity. We support our improvement through quantitative and qualitative analysis

    Physics-Driven Diffusion Models for Impact Sound Synthesis from Videos

    Full text link
    Modeling sounds emitted from physical object interactions is critical for immersive perceptual experiences in real and virtual worlds. Traditional methods of impact sound synthesis use physics simulation to obtain a set of physics parameters that could represent and synthesize the sound. However, they require fine details of both the object geometries and impact locations, which are rarely available in the real world and can not be applied to synthesize impact sounds from common videos. On the other hand, existing video-driven deep learning-based approaches could only capture the weak correspondence between visual content and impact sounds since they lack of physics knowledge. In this work, we propose a physics-driven diffusion model that can synthesize high-fidelity impact sound for a silent video clip. In addition to the video content, we propose to use additional physics priors to guide the impact sound synthesis procedure. The physics priors include both physics parameters that are directly estimated from noisy real-world impact sound examples without sophisticated setup and learned residual parameters that interpret the sound environment via neural networks. We further implement a novel diffusion model with specific training and inference strategies to combine physics priors and visual information for impact sound synthesis. Experimental results show that our model outperforms several existing systems in generating realistic impact sounds. More importantly, the physics-based representations are fully interpretable and transparent, thus enabling us to perform sound editing flexibly.Comment: CVPR 2023. Project page: https://sukun1045.github.io/video-physics-sound-diffusion

    Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling

    Full text link
    Uncertainty decomposition refers to the task of decomposing the total uncertainty of a model into data (aleatoric) uncertainty, resulting from the inherent complexity or ambiguity of the data, and model (epistemic) uncertainty, resulting from the lack of knowledge in the model. Performing uncertainty decomposition for large language models (LLMs) is an important step toward improving the reliability, trustworthiness, and interpretability of LLMs, but this research task is very challenging and remains unresolved. The existing canonical method, Bayesian Neural Network (BNN), cannot be applied to LLMs, because BNN requires training and ensembling multiple variants of models, which is infeasible or prohibitively expensive for LLMs. In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarifications ensemble, which bypasses the need to train new models. Rather than ensembling models with different parameters, our approach generates a set of clarifications for the input, feeds them into the fixed LLMs, and ensembles the corresponding predictions. We show that our framework shares a symmetric decomposition structure with BNN. Empirical evaluations demonstrate that the proposed framework provides accurate and reliable uncertainty quantification on various tasks. Code will be made publicly available at https://github.com/UCSB-NLP-Chang/llm_uncertainty .Comment: 15 pages, 3 figure

    Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech Processing

    Full text link
    Self-supervised learning (SSL) for rich speech representations has achieved empirical success in low-resource Automatic Speech Recognition (ASR) and other speech processing tasks, which can mitigate the necessity of a large amount of transcribed speech and thus has driven a growing demand for on-device ASR and other speech processing. However, advanced speech SSL models have become increasingly large, which contradicts the limited on-device resources. This gap could be more severe in multilingual/multitask scenarios requiring simultaneously recognizing multiple languages or executing multiple speech processing tasks. Additionally, strongly overparameterized speech SSL models tend to suffer from overfitting when being finetuned on low-resource speech corpus. This work aims to enhance the practical usage of speech SSL models towards a win-win in both enhanced efficiency and alleviated overfitting via our proposed S3^3-Router framework, which for the first time discovers that simply discarding no more than 10\% of model weights via only finetuning model connections of speech SSL models can achieve better accuracy over standard weight finetuning on downstream speech processing tasks. More importantly, S3^3-Router can serve as an all-in-one technique to enable (1) a new finetuning scheme, (2) an efficient multilingual/multitask solution, (3) a state-of-the-art ASR pruning technique, and (4) a new tool to quantitatively analyze the learned speech representation. We believe S3^3-Router has provided a new perspective for practical deployment of speech SSL models. Our codes are available at: https://github.com/GATECH-EIC/S3-Router.Comment: Accepted at NeurIPS 202
    corecore